Pattern formation in the basilar papilla: evidence for cell rearrangement.
نویسندگان
چکیده
The avian basilar papilla is composed of hair and supporting cells arranged in a regular pattern in which the hair cells are surrounded and isolated from each other by supporting cell processes. This arrangement of cells, in which the apical borders of hair cells do not contact one another, may be generated by contact-mediated lateral inhibition. Little is known, however, about the way in which hair and supporting cells are organized during development. Whole mounts double-labeled with antibodies to the 275 kDa hair-cell antigen and the tight junction protein cingulin were therefore used to examine the development of cell patterns in the basilar papilla. Hair cells that contact each other at their apical borders are seen during early development, especially on embryonic days (E) 8 and 9, but are no longer observed after E12. Hair and supporting cell patterns were analyzed in three different areas of the papilla at E9 and E12. In two of these regions between E9 and E12, the ratio of supporting cells to hair cells does not change significantly, whereas there is an increase in both the number of supporting cells around each hair cell and the number of hair cells that each supporting cell contacts. In the third region examined, there is a dramatic rise in the number of supporting cells around each hair cell, which although accompanied by a small, significant increase in the ratio of supporting cells to hair cells cannot be accounted for by an increase in supporting cell numbers. These data show that a rearrangement of hair and supporting cells with respect to one another may be a fundamental process underlying the development of a regular pattern in the basilar papilla.
منابع مشابه
Quantitative morphological analysis of the sensory epithelium of the starling and pigeon basilar papilla.
Several features of bird basilar papilla morphology were quantitatively studied in the starling and the pigeon in order to attempt a structure-function correlation. We confirmed and quantified several findings from earlier studies, but also obtained results contradictory to previous reports. The greatest discrepancies concerned the pattern of hair cell orientation. By including the results from...
متن کاملReorganization of the chick basilar papilla after acoustic trauma.
The auditory epithelium in birds and mammals consists of a postmitotic population of hair cells and supporting cells. Unlike mammals, birds can regenerate their auditory epithelia after trauma. Recent evidence indicates that supporting cells undergo mitosis after acoustic trauma, suggesting that supporting cells may transdifferentiate into hair cells. The goals of this study were to 1) characte...
متن کاملFGFR3 expression during development and regeneration of the chick inner ear sensory epithelia.
Several studies suggest fibroblast growth factor receptor 3 (FGFR3) plays a role in the development of the auditory epithelium in mammals. We undertook a study of FGFR3 in the developing and mature chicken inner ear and during regeneration of this epithelium to determine whether FGFR3 shows a similar pattern of expression in birds. FGFR3 mRNA is highly expressed in most support cells in the mat...
متن کاملTiming and topography of nucleus magnocellularis innervation by the cochlear ganglion.
This series of experiments examined the arrival and organization of cochlear nerve axons in the primary auditory brainstem nucleus, nucleus magnocellularis (NM), of the chick. DiI and DiD were injected into the cochlear nerve, cochlear ganglion, and basilar papilla (i.e., avian cochlea) in fixed tissue and labeled axons were studied in NM and its vicinity. Cochlear nerve axons first penetrate N...
متن کاملHair cell force generation does not amplify or tune vibrations within the chicken basilar papilla
Frequency tuning within the auditory papilla of most non-mammalian species is electrical, deriving from ion-channel resonance within their sensory hair cells. In contrast, tuning within the mammalian cochlea is mechanical, stemming from active mechanisms within outer hair cells that amplify the basilar membrane travelling wave. Interestingly, hair cells in the avian basilar papilla demonstrate ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 17 16 شماره
صفحات -
تاریخ انتشار 1997